Адресация в С++
Напишем программу, которая показывает, что одна из ячеек памяти занята под переменную iNum1 и содержит значение 2. Как программист, вы называете эту ячейку iNum1, но компьютер ссылается на эту ячейку памяти, используя определенное число. Ячейки памяти нумеруются в компьютере последовательно: 1, 2, 3, 4 и т.д. Эти числа называются адресами ячеек памяти. Как программисту, вам, вероятно, никогда не понадобится знать значение адреса этой ячейки памяти, который не всегда один и тот же. В зависимости от того, что выполнялось перед вашей программой, что уже имеется в памяти, и в зависимости от других факторов, адрес, используемый для хранения iNum1, будет меняться даже на одном и том же компьютере. Тем не менее, вы можете извлечь адрес, использующийся для ячейки памяти, посредством операции & (операция взятия адреса). Чтобы посмотреть ее в действии, сделайте следующее:
void main( void )
{
int iNum1;
iNum1 = 2;
cout << "Address of iNum1 is: ";
cout << iNum1 << endl;
}
Добавленный вами блок кода выводит адрес, использующийся для ячейки памяти переменной iNumI:
[ Назад | Оглавление | Далее ]
//
hotlog_js="1.0";hotlog_d=document; hotlog_n=navigator;hotlog_rn=Math.random(); hotlog_n_n=(hotlog_n.appName.substring(0,3)=="Mic")?0:1 hotlog_r=""+hotlog_rn+"&s=7004&r="+escape(hotlog_d.referrer)+"&pg="+ escape(window.location.href) hotlog_d.cookie="hotlog=1"; hotlog_r+="&c="+(hotlog_d.cookie?"Y":"N"); hotlog_d.cookie="hotlog=1; expires=Thu, 01-Jan-70 00:00:01 GMT"
hotlog_js="1.1";hotlog_r+="&j="+(navigator.javaEnabled()?"Y":"N")
hotlog_js="1.2";hotlog_s=screen; hotlog_r+="&wh="+hotlog_s.width+'x'+hotlog_s.height+"&px="+((hotlog_n_n==0)? hotlog_s.colorDepth:hotlog_s.pixelDepth)
hotlog_js="1.3"
hotlog_r+="&js="+hotlog_js; hotlog_d.write("")
Архитектура приложения
У всех Windows-приложений фиксированная структура, определяемая функцией WinMain. Структура приложения, построенного из объектов классов библиотеки MFC, является еще более определенной.
Приложение состоит из объекта theApp, функции WinMain, и некоторого количества других объектов. Сердцевина приложения - объект theApp - отвечает за создание всех остальных объектов и обработку очереди сообщений. Объект theApp является глобальным и создается еще до начала работы функции WinMain. Работа функции WinMain заключается в последовательном вызове двух методов объекта theApp: InitInstance и Run. В терминах сообщений можно сказать, WinMain посылает объекту theApp сообщение InitInstance, которое приводит в действие метод InitInstance.
Получив сообщение InitInstance, theApp создает внутренние объекты приложения. Процесс создания выглядит как последовательное порождение одних объектов другими. Набор объектов, порождаемых в начале этой цепочки, определен структурой MFC практически однозначно - это главная рамка, шаблон, документ, облик. Их роли в работе приложения будут обсуждаться позже.
Следующее сообщение, получаемое theApp, - Run - приводит в действие метод Run. Оно как бы говорит объекту: "Начинай работу, начинай процесс обработки сообщений из внешнего мира". Объект theApp циклически выбирает сообщения из очереди и инициирует обработку сообщений объектами приложения.
Некоторые объекты имеют графический образ на экране, с которым может взаимодействовать пользователь. Эти интерфейсные объекты обычно связаны с Windows-окном. Среди них особенно важны главная рамка и облик. Именно им объект прежде всего распределяет сообщения из очереди через механизм Windows-окон и функцию Dispatch.
Когда пользователь выбирает команду меню окна главной рамки, то возникают командные сообщения. Они отправляются сначала объектом theApp объекту главная рамка, а затем обходят по специальному маршруту целый ряд объектов, среди которых первыми являются документ и облик, информируя их о пришедшей от пользователя команде.
При работе приложения возникают и обычные вызовы одними объектами методов других объектов. В объектно-ориентированной терминологии такие вызовы могут называться сообщениями. В Visual C++ некоторым методам приписан именно этот статус (например, методу OnDraw).
Важное значение имеют также объекты документ, облик и главная рамка. Здесь отметим только, что документ содержит данные приложения, облик организует представление этих данных на экране, а окно главной рамки - это окно, внутри которого размещены все остальные окна приложения.
Библиотека MFC
Главная часть библиотеки MFC состоит из классов, используемых для построения компонентов приложения. С каждым MFC-приложением связывается определяющий его на верхнем уровне объект theApp, принадлежащий классу, производному от CWinApp.
Как правило, структура приложения определяется архитектурой Document-View (документ-облик). Это означает, что приложение состоит из одного или нескольких документов - объектов, классы которых являются производными от класса CDocument (класс "документ"). С каждым из документов связаны один или несколько обликов - объектов классов, производных от CView (класс "облик ") и определяющих облик документа.
Класс CFrameWnd ("окна-рамки") и производные от него определяют окна-рамки на дисплее. Элементы управления, создаваемые при проектировании интерфейса пользователя, принадлежат семейству классов элементов управления. Появляющиеся в процессе работы приложения диалоговые окна - это объекты классов, производных от CDialog.
Классы CView, CFrameWnd, CDialog и все классы элементов управления наследуют свойства и поведение своего базового класса CWnd ("окно"), определяющего по существу Windows-окно. Этот класс в свою очередь является наследником базового ласса CObject ("объект").
Одна из трудностей в понимании принципов устройства MFC-приложения, заключается в том, что объекты, из которых оно строится, наследуют свойства и поведение всех своих предков, поэтому необходимо знать базовые классы.
Библиотеки импортирования
При статическом подключении DLL имя .lib-файла определяется среди прочих параметров редактора связей в командной строке или на вкладке “Link” диалогового окна “Project Settings” среды Developer Studio. Однако .lib-файл, используемый при неявном подключении DLL, — это не обычная статическая библиотека. Такие .lib-файлы называются библиотеками импортирования (import libraries). В них содержится не сам код библиотеки, а только ссылки на все функции, экспортируемые из файла DLL, в котором все и хранится. В результате библиотеки импортирования, как правило, имеют меньший размер, чем DLL-файлы. К способам их создания вернемся позднее. А сейчас рассмотрим другие вопросы, касающиеся неявного подключения динамических библиотек.
BOOL CMDIDoc::OnNewDocument()
6. Инициализируем элементы данных класса представления. Для этого нужно создать функцию-элемент OnInitialUpdate() класса представления:
Выберите ClassWizard в меню View. На странице Message Maps
выберите следующие события:
BYTE RecvBuffer[; while(recv(sRecvBuffer,sizeof(RecvBuffer),!=SOCKET_ERROR)
Мы поставили цикл while, потому что он будет выполнятся пока клиент не отключится
Для получения данных от партнера по сетевому взаимодействию используется системный вызов recv, имеющий следующий вид
Class CMDIDoc : public CDocument
4. Объявляем элементы данных класса представления. Их будет тоже два : координаты круга по X и по Y. Для этого открываем файл CMDIView.h и изменяем объявление класса CMDIView следующим образом:
Class CMDIView : public CView
Как вы видите, имена переменных могут совпадать( обычно так и делается ).
5. Инициализируем элементы данных класса документа. Для этого откройте файл MDIDoc.cpp, найдите в нём функцию OnNewDocument() и напишите в ней следующий код:
Class neme : CMDIView Object ID : CMDIView Message : OnInitialUpdate
и нажмите на кнопку Add Function
Напишите следующий код в функцию OnInitialUpdate():
CPage pPage pPage= new CPage
Теперь добавим код по отображению текущей страницы и сокрытию предыдущей. Для этого добавим обработчики сообщений TCN_SELCHANGE и TCN_SELCHANGING :
CString m_url = "markdhtpkiaeru";
Ну вот и всё, приложение готово.
Отсюда можно взять рабочую программу HTTP Client под MFC, с использованием WinInet.
[ Назад | Оглавление | Далее ]
//
Динамическая загрузка и выгрузка DLL
Вместо того, чтобы Windows выполняла динамическое связывание с DLL при первой загрузке приложения в оперативную память, можно связать программу с модулем библиотеки во время выполнения программы (при таком способе в процессе создания приложения не нужно использовать библиотеку импорта). В частности, можно определить, какая из библиотек DLL доступна пользователю, или разрешить пользователю выбрать, какая из библиотек будет загружаться. Таким образом можно использовать разные DLL, в которых реализованы одни и те же функции, выполняющие различные действия. Например, приложение, предназначенное для независимой передачи данных, сможет в ходе выполнения принять решение, загружать ли DLL для протокола TCP/IP или для другого протокола.
Загрузка обычной DLL
Первое, что необходимо сделать при динамической загрузке DLL, - это поместить модуль библиотеки в память процесса. Данная операция выполняется с помощью функции ::LoadLibrary, имеющей единственный аргумент – имя загружаемого модуля. Соответствующий фрагмент программы должен выглядеть так:
HINSTANCE hMyDll; …… if((hMyDll=::LoadLibrary(“MyDLL”))==NULL) { /* не удалось загрузить DLL */ } else { /* приложение имеет право пользоваться функциями DLL через hMyDll */ }
Стандартным расширением файла библиотеки Windows считает .dll, если не указать другое расширение. Если в имени файла указан и путь, то только он будет использоваться для поиска файла. В противном случае Windows будет искать файл по той же схеме, что и в случае неявно подключенных DLL, начиная с каталога, из которого загружается exe-файл, и продолжая в соответствии со значением PATH.
Когда Windows обнаружит файл, его полный путь будет сравнен с путем библиотек DLL, уже загруженных данным процессом. Если обнаружится тождество, вместо загрузки копии приложения возвращвется дескриптор уже подключенной библиотеки.
Если файл обнаружен и библиотека успешно загрузилась, функция ::LoadLibrary возвращает ее дескриптор, который используется для доступа к функциям библиотеки.
Перед тем, как использовать функции библиотеки, необходимо получить их адрес. Для этого сначала следует воспользоваться директивой typedef для определения типа указателя на функцию и определить переменую этого нового типа, например:
// тип PFN_MyFunction будет объявлять указатель на функцию, // принимающую указатель на символьный буфер и выдающую значение типа int typedef int (WINAPI *PFN_MyFunction)(char *); …… PFN_MyFunction pfnMyFunction;
Затем следует получить дескриптор библиотеки, при помощи которого и определить адреса функций, например адрес фунции с именем MyFunction:
hMyDll=::LoadLibrary(“MyDLL”); pfnMyFunction=(PFN_MyFunction)::GetProcAddress(hMyDll,”MyFunction”); …… int iCode=(*pfnMyFunction)(“Hello”);
Адрес функции определяется при помощи функции ::GetProcAddress, ей следует передать имя библиотеки и имя функции. Последнее должно передаваться в том виде, в котором эксаортируется из DLL.
Можно также сослаться на функцию по порядковому номеру, по которому она экспортируется (при этом для создания библиотеки должен использоваться def-файл, об этом будет рассказано далее):
pfnMyFunction=(PFN_MyFunction)::GetProcAddress(hMyDll, MAKEINTRESOURCE(1));
После завершения работы с библиотекой динамической компоновки, ее можно выгрузить из памяти процесса с помощью функции ::FreeLibrary:
::FreeLibrary(hMyDll);
Загрузка MFC-расширений динамических библиотек
При загрузке MFC-расширений для DLL (подробно о которых рассказывается далее) вместо функций LoadLibraryи FreeLibrary используются функции AfxLoadLibrary и AfxFreeLibrary. Последние почти идентичны функциям Win32 API. Они лишь гарантируют дополнительно, что структуры MFC, инициализированные расширением DLL, не были запорчены другими потоками.
Ресурсы DLL
Динамическая загрузка применима и к ресурсам DLL, используемым MFC для загрузки стандартных ресурсов приложения. Для этого сначала необходимо вызвать функцию LoadLibrary и разместить DLL в памяти. Затем с помощью функции AfxSetResourceHandle нужно подготовить окно программы к приему ресурсов из вновь загруженной библиотеки. В противном случае ресурсы будут загружаться из файлов, подключенных к выполняемому файлу процесса. Такой подход удобен, если нужно использовать различные наборы ресурсов, например для разных языков.
Замечание.
С помощью функции LoadLibrary можно также загружать в память исполняемые файлы (не запускать их на выполнение!). Дескриптор выполняемого модуля может затем использоваться при обращении к функциям FindResource и LoadResource для поиска и загрузки ресурсов приложения. Выгружают модули из памяти также при помощи функции FreeLibrary.
Динамические расширения MFC
MFC позволяет создавать такие библиотеки DLL, которые воспринимаются приложениями не как набор отдельных функций, а как расширения MFC. С помощью данного вида DLL можно создавать новые классы, производные от классов MFC, и использовать их в своих приложениях.
Чтобы обеспечить возможность свободного обмена указателями на объекты MFC между приложением и DLL, нужно создать динамическое расширение MFC. DLL этого типа подключаются к динамическим библиотекам MFC так же, как и любые приложения, использующие динамическое расширение MFC.
Чтобы создать новое динамическое расширение MFC, проще всего, воспользовавшись мастером приложении, присвоить проекту тип MFC AppWizard (dll) и на шаге 1 включить режим “MFC Extension DLL”. В результате новому проекту будут присвоены все необходимые атрибуты динамического расширения MFC. Кроме того, будет создана функция DllMain для DLL, выполняющая ряд специфических операций по инициализации расширения DLL. Следует обратить внимание, что динамические библиотеки данного типа не содержат и не должны содержать объектов, производных от CWinApp.
Инициализация динамических расширений
Чтобы "вписаться" в структуру MFC, динамические расширения MFC требуют дополнительной начальной настройки. Соответствующие операции выполняются функцией DllMain. Рассмотрим пример этой функции, созданный мастером AppWizard.
static AFX_EXTENSION_MODULE MyExtDLL = { NULL, NULL } ; extern "C" int APIENTRY DllMain(HINSTANCE hinstance, DWORD dwReason, LPVOID IpReserved) { if (dwReason == DLL_PROCESS_ATTACH) { TRACED("MYEXT.DLL Initializing!\n") ; // Extension DLL one-time initialization AfxInitExtensionModule(MyExtDLL, hinstance) ;
// Insert this DLL into the resource chain new CDynLinkLibrary(MyExtDLL); } else if (dwReason == DLL_PROCESS_DETACH) { TRACED("MYEXT.DLL Terminating!\n") ; } return 1; // ok }
Самой важной частью этой функции является вызов AfxInitExtensionModule. Это инициализация динамической библиотеки, позволяющая ей корректно работать в составе структуры MFC. Аргументами данной функции являются передаваемый в DllMain дескриптор библиотеки DLL и структура AFX_EXTENSION_MODULE, содержащая информацию о подключаемой к MFC динамической библиотеке.
Нет необходимости инициализировать структуру AFX_EXTENSION_MODULE явно. Однако объявить ее нужно обязательно. Инициализацией же займется конструктор CDynLinkLibrary. В DLL необходимо создать класс CDynLinkLibrary. Его конструктор не только будет инициализировать структуру AFX_EXTENSION_MODULE, но и добавит новую библиотеку в список DLL, с которыми может работать MFC.
DLL и MFC
Программист не обязан использовать MFC при создании динамических библиотек. Однако использование MFC открывает ряд очень важных возможностей.
Имеется два уровня использования структуры MFC в DLL. Первый из них — это обычная динамическая библиотека на основе MFC, MFC DLL (regular MFC DLL). Она может использовать MFC, но не может передавать указатели на объекты MFC между DLL и приложениями. Второй уровень реализован в динамических расширениях MFC (MFC extensions DLL). Использование этого вида динамических библиотек требует некоторых дополнительных усилий по настройке, но позволяет свободно обмениваться указателями на объекты MFC между DLL и приложением.
Функция DllMain
Большинство библиотек DLL — просто коллекции практически независимых друг от друга функций, экспортируемых в приложения и используемых в них. Кроме функций, предназначенных для экспортирования, в каждой библиотеке DLL есть функция DllMain. Эта функция предназначена для инициализации и очистки DLL. Она пришла на смену функциям LibMain и WEP, применявшимся в предыдущих версиях Windows. Структура простейшей функции DllMain может выглядеть, например, так:
BOOL WINAPI DllMain (HANDLE hInst,DWORD dwReason, LPVOID IpReserved) { BOOL bAllWentWell=TRUE; switch (dwReason) { case DLL_PROCESS_ATTACH: // Инициализация процесса. break; case DLL_THREAD_ATTACH: // Инициализация потока. break; case DLL_THREAD_DETACH: // Очистка структур потока. break; case DLL_PROCESS_DETACH: // Очистка структур процесса. break; } if(bAllWentWell) return TRUE; else return FALSE; }
Функция DllMain вызывается в нескольких случаях. Причина ее вызова определяется параметром dwReason, который может принимать одно из следующих значений.
При первой загрузке библиотеки DLL процессом вызывается функция DllMain с dwReason, равным DLL_PROCESS_ATTACH. Каждый раз при создании процессом нового потока DllMainO вызывается с dwReason, равным DLL_THREAD_ATTACH (кроме первого потока, потому что в этом случае dwReason равен DLL_PROCESS_ATTACH).
По окончании работы процесса с DLL функция DllMain вызывается с параметром dwReason, равным DLL_PROCESS_DETACH. При уничтожении потока (кроме первого) dwReason будет равен DLL_THREAD_DETACH.
Все операции по инициализации и очистке для процессов и потоков, в которых нуждается DLL, необходимо выполнять на основании значения dwReason, как было показано в предыдущем примере. Инициализация процессов обычно ограничивается выделением ресурсов, совместно используемых потоками, в частности загрузкой разделяемых файлов и инициализацией библиотек. Инициализация потоков применяется для настройки режимов, свойственных только данному потоку, например для инициализации локальной памяти.
В состав DLL могут входить ресурсы, не принадлежащие вызывающему эту библиотеку приложению. Если функции DLL работают с ресурсами DLL, было бы, очевидно, полезно сохранить где-нибудь в укромном месте дескриптор hInst и использовать его при загрузке ресурсов из DLL. Указатель IpReserved зарезервирован для внутреннего использования Windows. Следовательно, приложение не должно претендовать на него. Можно лишь проверить его значение. Если библиотека DLL была загружена динамически, оно будет равно NULL. При статической загрузке этот указатель будет ненулевым.
В случае успешного завершения функция DllMain должна возвращать TRUE. В случае возникновения ошибки возвращается FALSE, и дальнейшие действия прекращаются.
Замечание.
Если не написать собственной функции DllMain(), компилятор подключит стандартную версию, которая просто возвращает TRUE.
Функция GetSystemDirectory возвращает
Отсюда можно взять рабочую программу под MFC, с использованием Win API функций.
[ Назад | Оглавление ]
//
Visual C для начинающих
Значениями ряда атрибутов контекста устройства являются объекты GDI. Как отмечалось ранее, в вызовах методов, рисующих фигуры на экране, многие параметры не указываются, а берутся из атрибутов контекста устройства. Чтобы эти параметры отличались от установленных в контексте устройства по умолчанию, необходимо:
Сохранить старое значение атрибута. Установить новое. Выполнить необходимые действия. Восстановить старое значение атрибута.
Последовательность этих действий иллюстрируется примером:
void CMyView::OnDraw(CDC* pDC)
{
CPen Pen;
if(Pen.CreatePen(PS_SOLID,2,RGB(0,0,0))
{
// сохранение старого и установление нового значения атрибута
CPen* pOldPen=pDC->SelectObject(&Pen);
// выполнение необходимых действий
pDC->MoveTo(....); pDC->LineTo(....);
// восстановление старого значения атрибута
pDC->SelectObject(pOldPen);
}
}
Метод SelectObject в качестве результата возвращает указатель на текущее перо и делает текущим перо, указанное в качестве параметра метода.
HANDLE hCOM=CreateFile("COM,GENERIC_WRITE,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL);
Ну вот и всё, приложение готово.
[ Назад | Оглавление | Далее ]
//
Имена, используемые в MFC
Библиотека MFC содержит большое количество классов, структур, констант и т.д. Для того, чтобы текст MFC-приложений был более легким для понимания, принято применять ряд соглашений для используемых имен и комментариев.
Названия всех классов и шаблонов классов библиотеки MFC начинаются с заглавной буквы C. При наследовании классов от классов MFC можно давать им любые имена. Рекомендуется начинать их названия с заглавной буквы C. Это сделает исходный текст приложения более ясным для понимания.
Чтобы отличить элементы данных, входящих в класс, от простых переменных, их имена принято начинать с префикса m_. Названия методов классов, как правило, специально не выделяются, но обычно их начинают с заглавной буквы.
Библиотека MFC включает в себя, помимо классов, набор служебных функций. Названия этих функций начинаются с символов Afx, например AfxGetApp. Символы AFX являются сокращением от словосочетания Application FrameworkX, означающих основу приложения, его внутреннее устройство.
Символы AFX встречаются не только в названии функций MFC. Многие константы, макрокоманды и другие символы начинаются с этих символов. В общем случае AFX является признаком, по которому можно определить принадлежность того или иного объекта (функция, переменная, ключевое слово или символ) к библиотеке MFC.
Когда приложение разрабатывается средствами MFC AppWizard и ClassWizard, они размещают в исходном тексте приложения комментарии следующего вида:
//{{AFX_ ... //}}AFX_
Такие комментарии образуют блок кода программы, который управляется только средствами MFC AppWizard и ClassWizard. Пользователь не должен вручную вносить изменения в этом блоке. Для этого необходимо употреблять средства ClassWizard.
В следующей таблице представлено краткое описание некоторых блоков //{{AFX_:
Включает макрокоманды DDX, предназначенные для связывания элементов данных класса и органов управления диалоговых панелей. Используется в файле реализации классов диалоговых панелей. |
Включает описание методов, которые предназначены для обработки сообщений. Этот блок используется при описании класса. |
Включает макрокоманды таблицы сообщений класса. Используются совместно с AFX_MSG. |
Включает описание переопределенных виртуальных методов класса. Блок AFX_VIRTUAL используется при описании класса. |
Tab control - это мощное средство для решению многих проблем в интерфейсе приложений. Оно позволят существенно увеличить скорость работы вашего приложения, разбить на "части" диалог в удобной для пользователя форме.
В MFC есть встроенный класс по работе с Tab control - класс CTabCtrl.
Для практики напишем программу, которая будет использовать класс CTabCtrl и в которой будет три "закладки" - диалога.
Шаги создания проекта:
Использование средств разработки
В состав компилятора Microsoft Developer Studio встроены средства, позволяющие программисту облегчить разработку приложений. В первую очередь к ним относятся MFC AppWisard, ClassWizard и редактор ресурсов.
Благодаря MFC AppWizard среда разработчика позволяет быстро создавать шаблоны новых приложений. При этом программисту не приходится писать ни одной строчки кода. Достаточно ответить на ряд вопросов, касающихся того, какое приложение требуется создать, и исходные тексты шаблона приложения вместе с файлами ресурсов готовы. Эти тексты можно оттранслировать и получить готовый загрузочный модуль приложения.
Конечно, никакие средства автоматизированной разработки не смогут создать программу полностью без участия программиста. Прикладную часть приложения придется разрабатывать ему.
Для создания ресурсов приложения предназначен редактор ресурсов. Он позволяет быстро создавать новые меню, диалоговые панели, добавлять кнопки к панели управления toolbar и т.д.
Средство ClassWizard позволяет подключить к созданным и отредактированным ресурсам управляющий ими код. Большую часть работы по описанию и определению функций, обрабатывающих сообщения от меню, органов управления диалоговых панелей и т.д., также берет на себя средство ClassWizard.
Использование таймера
1. Введение
2. Создание и уничтожение таймера
3. Сообщение WM_TIMER
4. Первый способ использования таймера
5. Второй способ использования таймера
6. Пример Windows-приложения, использующего таймер
Экспортирование функций из динамических расширений
Рассмотрим теперь, как осуществляется экспортирование в приложение функций и классов из динамического расширения. Хотя добавить в DEF-файл все расширенные имена можно и вручную, лучше использовать модификаторы для объявлений экспортируемых классов и функций, такие как AFX_EXT_CLASS и AFX_EXT_API,например:
class AFX_EXT_CLASS CMyClass : public CObject ( // Your class declaration } void AFX_EXT_API MyFunc() ;
[ Назад | Оглавление | Далее ]
//
Экспортирование функций из DLL
Чтобы приложение могло обращаться к функциям динамической библиотеки, каждая из них должна занимать строку в таблице экспортируемых функций DLL. Есть два способа занести функцию в эту таблицу на этапе компиляции.
Метод __declspec (dllexport)
Можно экспортировать функцию из DLL, поставив в начале ее описания модификатор __declspec (dllexport) . Кроме того, в состав MFC входит несколько макросов, определяющих __declspec (dllexport), в том числе AFX_CLASS_EXPORT, AFX_DATA_EXPORT и AFX_API_EXPORT.
Метод __declspec применяется не так часто, как второй метод, работающий с файлами определения модуля (.def), и позволяет лучше управлять процессом экспортирования.
Файлы определения модуля
Синтаксис файлов с расширением .def в Visual C++ достаточно прямолинеен, главным образом потому, что сложные параметры, использовавшиеся в ранних версиях Windows, в Win32 более не применяются. Как станет ясно из следующего простого примера, .def-файл содержит имя и описание библиотеки, а также список экспортируемых функций:
MyDLL.def LIBRARY “MyDLL” DESCRIPTION ‘MyDLL – пример DLL-библиотеки’
EXPORTS MyFunction @1
В строке экспорта функции можно указать ее порядковый номер, поставив перед ним символ @. Этот номер будет затем использоваться при обращении к GetProcAddress (). На самом деле компилятор присваивает порядковые номера всем экспортируемым объектам. Однако способ, которым он это делает, отчасти непредсказуем, если не присвоить эти номера явно.
В строке экспорта можно использовать параметр NONAME. Он запрещает компилятору включать имя функции в таблицу экспортирования DLL:
MyFunction @1 NONAME
Иногда это позволяет сэкономить много места в файле DLL. Приложения, использующие библитеку импортирования для неявного подключения DLL, не “заметят” разницы, поскоьку при неявном подключении порядковые номера используются автоматически. Приложениям, загружающим библиотеки DLL динамически, потребуется передавать в GetProcAddress порядковый номер, а не имя функции.
При использовании вышеприведенного def-файл описания экспортируемых функций DLL-библиотеки может быть,например, не таким:
#define EXPORT extern “C” __declspec (dllexport) EXPORT int CALLBACK MyFunction(char *str); a таким: extern “C” int CALLBACK MyFunction(char *str);
Экспортирование классов
Создание .def-файла для экспортирования даже простых классов из динамической библиотеки может оказаться довольно сложным делом. Понадобится явно экспортировать каждую функцию, которая может быть использована внешним приложением.
Если взглянуть на реализованный в классе файл распределения памяти, в нем можно заметить некоторые весьма необычные функции. Оказывается, здесь есть неявные конструкторы и деструкторы, функции, объявленные в макросах MFC, в частности _DECLARE_MESSAGE_MAP, а также функции, которые написанные программистом.
Хотя можно экспортировать каждую из этих функций в отдельности, есть более простой способ. Если в объявлении класса воспользоваться макромодификатором AFX_CLASS_EXPORT, компилятор сам позаботится об экспортировании необходимых функций, позволяющих приложению использовать класс, содержащийся в DLL.
Каркас приложений
С Visual C++ тесно связано еще одно понятие - каркас приложений, которое близко и созвучно понятию каркаса приложения, но в отличие от него относится не к одному конкретному приложению, а к библиотеке, с помощью которой строятся многие приложения. Каркас приложений - это библиотека классов, из которых программист берет не только набор классов, играющих роль дополнительных типов данных, но и классы, служащие строительными блоками приложения на самом верхнем уровне. С этой точки зрения, каркас приложения является частью каркаса приложений, относящейся к данному приложению. Примеры каркасов приложений - библиотеки классов MFC и OWL.
Каркас приложения
Наследование - одна из фундаментальных идей объектно-ориентированного программирования. Именно этот механизм наследования позволяет программисту дополнять и переопределять поведение базового класса, не вторгаясь в библиотеку MFC, которая остается неизменной. Все изменения делаются в собственном производном классе. Именно в этом и заключается работа программиста.
Объекты, их которых состоит приложение, являются объектами классов, производных от классов библиотеки MFC. Разработка приложения состоит в том, что программист берет из библиотеки MFC классы CWinApp, CFrameWnd, CDocument, CView и т.д. и строит производные классы. Приложение создается как совокупность объектов этих производных классов. Каждый объект несет в себе как наследуемые черты, определяемые базовыми классами, так и новые черты, добавленные программистом. Наследуемые черты определяют общую схему поведения, свойственную таким приложениям. Новые же черты позволяют реализовать специфические особенности поведения приложения, необходимые для решения стоящей перед ним задачи.
При определении производного класса программист может:
переопределить некоторые методы базового класса, причем те методы, что не были переопределены, будут наследоваться в том виде, в каком они существуют в базовом классе;
добавить новые методы;
добавить новые переменные.
Приложение, построенное на основе библиотеки MFC, - "айсберг", большая часть которого невидима, но является основой всего приложения. Часть приложения, лежащую в библиотеке MFC, - framework - называется каркасом приложения. Рассмотрим работу приложения как процесс взаимодействия между каркасом и частью приложения, разработанной программистом. Совершенно естественно, что в методах, определенных программистом, могут встречаться вызовы методов базового класса, что вполне можно рассматривать как вызов функции из библиотеки. Важнее, однако, что и метод производного класса, определенный программистом, может быть вызван из метода родительского класса. Другими словами, каркас и производный класс в этом смысле равноправны - их методы могут вызывать друг друга. Такое равноправие достигается благодаря виртуальным методам и полиморфизму, имеющимся в арсенале объектно-ориентированного программирования.
Если метод базового класса объявлен виртуальным и разработчик переопределил его в производном классе, это значит, что при вызове данного метода в некоторой полиморфной функции базового класса в момент исполнения будет вызван метод производного класса и, следовательно, каркас вызывает метод, определенный программистом. Точнее говоря, обращение к этому методу должно производиться через ссылку на производный объект либо через объект, являющийся формальным параметром и получающий при вызове в качестве своего значения объект производного класса. Когда вызывается виртуальный метод М1, переопределенный разработчиком, то согласно терминологии Visual C++, каркас посылает сообщение М1 объекту производного класса, а метод М1 этого объекта обрабатывает это сообщение. Если сообщение М1 послано объекту производного класса, а обработчик этого сообщения не задан программистом, объект наследует метод М1 ближайшего родительского класса, в котором определен этот метод. Если же обработчик такого сообщения создан программистом, он автоматически отменяет действия, предусмотренные родительским классом в отсутствие этого обработчика.
Класс CFile
Класс CFile предназначен для обеспечения работы с файлами. Он позволяет упростить использование файлов, представляя файл как объект, который можно создать, читать, записывать и т.д.
Чтобы получить доступ к файлу, сначала надо создать объект класса CFile. Конструктор класса позволяет сразу после создания такого объекта открыть файл. Но можно открыть файл и позднее, воспользовавшись методом Open.
Открытие и создание файлов
После создания объекта класса CFile можно открыть файл, вызвав метод Open. Методу надо указать путь к открываемому файлу и режим его использования. Прототип метода Open имеет следующий вид:
virtual BOOL Open(LPCTSTR lpszFileName, UINT nOpenFlags, CFileException* pError=NULL);
В качестве параметра lpszFileName надо указать имя открываемого файла. Можно указать только имя файла или полное имя файла, включающее полный путь к нему.
Второй параметр nOpenFlags определяет действие, выполняемое методом Open с файлом, а также атрибуты файла. Ниже представлены некоторые возможеые значения параметра nOpenFlags:
CFile::modeCreate - Создается новый файл. Если указанный файл существует, то его содержимое стирается и длина файла устанавливается равной нулю.
CFile::modeNoTruncate - Этот файл предназначен для использования совместно с файлом CFile::modeCreate. Если создается уже существующий файл, то его содержимое не будет удалено.
CFile::modeRead - Файл открывается только для чтения.
CFile::modeReadWrite - Файл открывается для записи и для чтения.
CFile::modeWrite - Файл открывается только для записи.
CFile::typeText - Используется классами, порожденными от класса CFile, например CStdioFile, для работы с файлами в текстовом режиме. Текстовый режим обеспечивает преобразование комбинации символа возврата каретки и символа перевода строки.
CFile::Binary - Используется классами, порожденными от класса CFile, например CStdioFile, для работы с файлами в двоичном режиме.
Необязательный параметр pError, который является указателем на объект класса CFileException, используется только в том случае, если выполнение операции с файлом вызовет ошибку. При этом в объект, указываемый pError, будет записана дополнительная информация.
Метод Open возвращает не нулевое значение, если файл открыт и нуль в случае ошибки. Ошибка при открытии файла может случиться, например, если методу Open указан для чтения несуществующий файл.
Идентификатор открытого файла
В состав класса CFile входит элемент данных m_hFile типа UINT. В нем хранится идентификатор открытого файла. Если объект класса CFile уже создан, но файл еще не открыт, то в переменной m_hFile записана константа hFileNull.
Обычно идентификатор открытого файла непосредственно не используется. Методы класса CFile позволяют выполнять практически любые операции с файлами и не требуют указывать идентификатор файла. Так как m_hFile является элементом класса, то реализация его методов всегда имеет свободный доступ к нему.
Закрытие файлов
После завершения работы с файлом, его надо закрыть. Класс CFile имеет для этого специальный метод Close. Нужно заметить, что если был создан объект класса CFile и открыт файл, а затем объект удаляется, то связанный с ним файл закрывается автоматически с помощью деструктора.
Чтение и запись файлов
Для доступа к файлам предназначено несколько методов класса CFile: Read, ReadHuge, Write, WriteHuge, Flush. Методы Read и ReadHuge предназначены для чтения данных из предварительно открытого файла. В 32-разрядных операционных системах оба метода могут одновременно считать из файла больше 65535 байт. Спецификация ReadHuge считается устаревшей и оставлена только для совместимости с 16-разрядными операционными системами.
Данные, прочитанные из файла, записываются в буфер lpBuf. Параметр nCount определяет количество байт, которое надо считать из файла. Фактически из файла может быть считано меньше байт, чем запрошено параметром nCount. Это происходит, если во время чтения достигнут конец файла. Методы возвращают количество байт, прочитанных из файла.
Для записи в файл предназначены методы Write и WriteHuge. В 32-разрядных операционных системах оба метода могут одновременно записывать в файл больше 65535 байт. Методы записывает в открытый файл nCount байт из буфера lpBuf. В случае возникновения ошибки записи, например переполнения диска, методы вызывает обработку исключения.
Метод Flush
Когда используется метод Write или WriteHuge для записи данных на диск, они некоторое время могут находиться во временном буфере. Чтобы убедиться, что необходимые изменения внесены в файл на диске, нужно воспользоваться методом Flush.
Операции с файлами
В состав класса входят методы, позволяющие выполнять над файлами различные операции, например копирование, переименование, удаление, изменение атрибутов.
Для изменения имени файла класс CFile включает статический метод Rename, выполняющий функции этой команды. Метод нельзя использовать для переименования каталогов. В случае возникновения ошибки метод вызывает исключение.
Для удаления файлов в классе CFile включен статический метод Remove, позволяющий удалить указанный файл. Этот метод не позволяет удалять каталоги. Если удалить файл невозможно, то метод вызывает исключение.
Чтобы определить дату и время создания файла, его длину и атрибуты, предназначен статический метод GetStatus. Существует две разновидности метода - первый определен как виртуальный, а второй - как статический метод.
Виртуальная версия метода GetStatus определяет состояние открытого файла, связанного с данным объектом класса CFile. Этот метод вызывается только тогда, когда объект класса CFile создан и файл открыт.
Статическая версия метода GetStatus позволяет определить характеристики файла, не связанного с объектом класса CFile. Чтобы воспользоваться этим методом, необязательно предварительно открывать файл.
Блокировка
В состав класса включены методы LockRange и UnlockRange, позволяющие заблокировать один или несколько фрагментов данных файла для доступа из других процессов. Если приложение пытается повторно блокировать данные, уже заблокированные раньше этим или другим приложением, вызывается исключение. Блокировка представляет собой один из механизмов, позволяющих нескольким приложениям или процессам одновременно работать с одним файлом, не мешая друг другу.
Установить блокировку можно с помощью метода LockRange. Чтобы снять установленные блокировки, надо воспользоваться методом UnlockRange. Если в одном файле установлены несколько блокировок, то каждая из них должна сниматься отдельным вызовом метода UnlockRange.
Позиционирование
Чтобы переместить указатель текущей позиции файла в новое положение, можно воспользоваться одним из следующих методов класса CFile - Seek, SeekToBegin, SeekToEnd. В состав класса CFile также входят методы, позволяющие установить и изменить длину файла, - GetLength, SetLength.
При открытии файла указатель текущей позиции файла находится в самом начале файла. Когда порция данных прочитана или записана, то указатель текущей позиции перемещается в сторону конца файла и указывает на данные, которые будут читаться или записываться очередной операцией чтения или записи в файл.
Чтобы переместить указатель текущей позиции файла в любое место, можно воспользоваться универсальным методом Seek. Он позволяет переместить указатель на определенное число байт относительно начала, конца или текущей позиции указателя.
Чтобы переместить указатель в начало или конец файла, наиболее удобно использовать специальные методы. Метод SeekToBegin перемещает указатель в начало файла, а метод SeekToEnd - в его конец.
Но для определения длины открытого файла совсем необязательно перемещать его указатель. Можно воспользоваться методом GetLength. Этот метод также возвращает длину открытого файла в байтах. Метод SetLength позволяет изменить длину открытого файла. Если при помощи этого метода размер файла увеличивается, то значение последних байт не определено.
Текущую позицию указателя файла можно определить с помощью метода GetPosition. Возвращаемое методом GetPosition 32-разрядное значение определяет смещение указателя от начала файла.
Характеристики открытого файла
Чтобы определить расположение открытого файла на диске, надо вызвать метод GetFilePath. Этот метод возвращает объект класса CString, в котором содержится полный путь файла, включая имя диска, каталоги, имя файла и его расширение.
Если требуется определить только имя и расширение открытого файла, можно воспользоваться методом GetFileName. Он возвращает объект класса CString, в котором находится имя файла. В случае, когда нужно узнать только имя открытого файла без расширения, пользуются методом GetFileTitle.
Следующий метод класса CFile позволяет установить путь файла. Это метод не создает, не копирует и не изменяет имени файла, он только заполняет соответствующий элемент данных в объекте класса CFile.
Класс CMemFile
В библиотеку MFC входит класс CMemFile, наследуемый от базового класса CFile. Класс CMemFile представляет файл, размещенный, в оперативной памяти. С объектами класса CMemFile так же, как и с объектами класса CFile. Отличие заключается в том, что файл, связанный с объектом CMemFile, расположен не на диске, а в оперативной памяти компьютера. За счет этого операции с таким файлом происходят значительно быстрее, чем с обычными файлами.
Работая с объектами класса CMemFile, можно использовать практически все методы класса CFile, которые были описаны выше. Можно записывать данные в такой файл или считывать их. Кроме этих методов в состав класса CMemFile включены дополнительные методы.
Для создания объектов класса CMemFile предназначено два различных конструктора. Первый конструктор CMemFile имеет всего один необязательный параметр nGrowBytes:
CMemFile(UINT nGrowBytes=1024);
Этот конструктор создает в оперативной памяти пустой файл. После создания файл автоматически открывается (не нужно вызывать метод Open).
Когда начинается запись в такой файл, автоматически выделяется блок памяти. Для получения памяти методы класса CMemFile вызывают стандартные функции malloc, realloc и free. Если выделенного блока памяти недостаточно, его размер увеличивается. Увеличение блока памяти файла происходит по частям по nGrowBytes байт. После удаления объекта класса CMemFile используемая память автоматически возвращается системе.
Второй конструктор класса CMemFile имеет более сложный прототип. Это конструктор используется в тех случаях, когда программист сам выделяет память для файла:
CMemFile(BYTE* lpBuffer, UINT nBufferSize, UINT nGrowBytes=0);
Параметр lpBuffer указывает на буфер, который будет использоваться для файла. Размер буфера определяется параметром nBufferSize.
Необязательный параметр nGrowBytes используется более комплексно, чем в первом конструкторе класса. Если nGrowBytes содержит нуль, то созданный файл будет содержать данные из буфера lpBuffer. Длина такого файла будет равна nBufferSize.
Если nGrowBytes больше нуля, то содержимое буфера lpBuffer игнорируется. Кроме того, если в такой файл записывается больше данных, чем помещается в отведенном буфере, то его размер автоматически увеличивается. Увеличение блока памяти файла происходит по частям по nGrowBytes байт.
Класс CMemFile позволяет получить указатель на область памяти, используемую файлом. Через этот указатель можно непосредственно работать с содержимым файла, не ограничивая себя методами класса CFile. Для получения указателя на буфер файла можно воспользоваться методом Detach. Перед этим полезно определить длину файла (и соответственно размер буфера памяти), вызвав метод GetLength.
Метод Detach закрывает данный файл и возвращает указатель на используемый им блок памяти. Если опять потребуется открыть файл и связать с ним оперативный блок памяти, нужно вызвать метод Attach.
Нужно отметить, что для управления буфером файла класс CMemFile вызывает стандартные функции malloc, realloc и free. Поэтому, чтобы не нарушать механизм управления памятью, буфер lpBuffer должен быть создан функциями malloc или calloc.
Класс CStdioFile
Тем, кто привык пользоваться функциями потокового ввода/вывода из стандартной библиотеки C и C++, следует обратить внимание на класс CStdioFile, наследованный от базового класса CFile. Этот класс позволяет выполнять буферизированный ввод/вывод в текстовом и двоичном режиме. Для объектов класса CStdioFile можно вызывать практически все методы класса CFile.
В класс CStdioFile входит элемент данных m_pStream, который содержит указатель на открытый файл. Если объект класса CStdioFile создан, но файл еще не открыт, либо закрыт, то m_pStream содержит константу NULL.
Класс CStdioFile имеет три различных конструктора. Первый конструктор класса CStdioFile не имеет параметров. Этот конструктор только создает объект класса, но не открывает никаких файлов. Чтобы открыть файл, надо вызвать метод Open базового класса CFile.
Второй конструктор класса CStdioFile можно вызвать, если файл уже открыт и нужно создать новый объект класса CStdioFile и связать с ним открытый файл. Этот конструктор можно использовать, если файл был открыт стандартной функцией fopen. Параметр метода должен содержать указатель на файл, полученный вызовом стандартной функции fopen.
Третий конструктор можно использовать, если надо создать объект класса CStdioFile, открыть новый файл и связать его с только что созданным объектом.
Для чтения и записи в текстовый файл класс CStdioFile включает два новых метода: ReadString и WriteString. Первый метод позволяет прочитать из файла строку символов, а второй метод - записать.
Классы в C++
Одной из основных черт C++, которой нет в С, является концепция классов. По существу, классы - самое важное понятие в C++. Классы похожи на структуры языка С. Однако структура С определяет только данные, ассоциированные с этой структурой. Вот пример структуры С:
struct CIRCLE
{
int radius;
int color;
{;
После того как вы объявили структуру, вы можете использовать ее в пределах вашей функции main (), как показано ниже:
void main()
CIRCLE MyCircle;
...
...
MyCircle.radius = 18;
MyCircle.color = 255; // 255 задает цвет
...
...
}
Со структурой MyCircle (представляющей окружность) ассоциируются данные radius и color (радиус и цвет). Класс в C++, с другой стороны, имеет как ассоциированные с ним данные, так и функции. Данные класса называются элементами данных, а функции класса - элементами-функциями. Следовательно, в программе, которая использует классы, можно написать следующий код:
MyCircle.radius = 20;
MyCircle.color = 255;
MyCircle.DisplayCircle() ;
Первые два оператора присваивают значения элементам данных MyCircle radius и color; третий оператор вызывает функцию-элемент DisplayCircle() для вывода окружности MyCircle. MyCircle называется объектом класса circle. Ваша программа может объявить другой объект с именем HerCircle класса circle следующим образом:
CIRCLE HerCircle;
Следующие операторы присваивают значения элементам данных HerCircle radius и color:
HerCircle.radius = 30;
HerCircle.color = 0;
Затем вы можете использовать функцию-элемент DisplayCircie () для вывода окружности HerCircle:
HerCircle.DisplayCircle();
Объявление класса
Перед тем как работать с классом, ваша программа должна его объявить (так же как перед работой со структурой mystructure вы должны были объявить ее элементы данных). В данном разделе вы познакомитесь с синтаксисом объявления класса. Вы будете и дальше практиковаться с классом circle:
class Circle (
public:
Circle () ;
void SetRadius(void) ;
void GetRadius(void) ;
~Circle () ;
private:
void CalculateArea(void);
Консольное приложение
Для того, чтобы включить использование MFC в ваше консольное приложение, вам надо написать следующий код:
#include <afxwin.h>
#include <iostream.h>
int main( int argc, char* argv[] )
{
if ( !AfxWinInit( ::GetModuleHandle( NULL ), NULL, ::GetCommandLine( ), 0 ) )
{
cerr
return 1;
}
// код вашей программы
return 0;
}
После того, как Вы набрали код, обязательно сделайте следующее:
Запустите программу - Build / Rebuild all ( будут ошибки ), выберите Build / Set active configuration - Win 32 Realise, выберите пункт меню "Project", далее "Settings...", закладку "C/C++", Category - Code Generation и в пункте "Use run-time library" выберите "Multithreaded". После этого сделайте опять Build / Rebuild all и программа будет работать.
Если MFC инициализировалась правильно, то будет выполняться код вашей программы, если нет - выведется сообщение "MFC Failed to initialize." Если что то не так, проверте наличие библиотеки "afxwin.h" и правильность написания кода или возьмите готовую программу отсюда.
Методы для рисования линий и фигур
Пикселы
Для установки цвета пикселя с логическими координатами (x,y) используются метод SetPixel. Получить значение цвета пикселя можно методом GetPixel.
Цвет задается функцией RGB. Как уже отмечалось выше, если в физической палитре нет данного цвета, задаваемого фактическим параметром, Windows устанавливает наиболее близкий цвет. Он-то и возвращается методом SetPixel. Следует также отметить, что, хотя координаты являются логическими, устанавливается цвет только одного пикселя, даже если единица измерения для текущей системы координат иная.
Линии
Прежде, чем описывать методы для рисования линий, рассмотрим два важных для них атрибута контекста устройства.
Первый называют текущим пером. Его значением является перо как объект GDI. Любая линия (в том числе и ограничивающая фигуру) рисуется пером. Если метод не содержит явного параметра, задающего перо, то для рисования берется текущее перо, которое можно установить методом SelectObject.
Или, если в качестве параметра передать одну из констант BLACK_PEN, NULL_PEN, WHITE_PEN, то методом SelectStockObject
Второй важный атрибут - текущая позиция пера. Чтобы изменить координаты текущей позиции пера, используются метод MoveTo.
Чтобы нарисовать прямую линию от текущей позиции пера до нужной точки с логическими координатами (x,y), используется метод LineTo. После выполнения метода LineTo заданная в нем точка становится текущей позицией пера.
Если имеется массив точек и требуется соединить линией каждую следующую точку с предыдущей, можно использовать метод PolyLine,
в котором первый параметр - указатель на массив элементов типа POINT, а второй равен количеству точек. При выполнении этого метода текущая позиция пера не изменяется.
Следующий метод аналогичен PolyLine за исключением того, что он устанавливает текущую позицию пера равной последней точке массива - PolyLineTo.
Если же требуется соединить между собой все точки, содержащиеся в массиве, можно вызвать метод PolyPolyline.
Фигуры
В Visual C++ имеются методы для рисования: прямоугольника (Rectangle); эллипса (Ellipse); скругленного прямоугольника (RoundRect); сегмента эллипса (Chord); сектора эллипса (Pie); замкнутого многоугольника; составного замкнутого многоугольника.
Для рисования фигур важен атрибут контекста устройства, называемый текущей кистью. Он задает кисть как объект GDI, с помощью которого производится закрашивание внутренней области фигуры. Текущая кисть устанавливается методом SelectObject или SelectStockObject, если в качестве параметра передать одну из констант: BLACK_BRUSH, DKGRAY_BRUSH, GRAY_BRUSH, HOLLOW_BRUSH, LTGRAY_BRUSH, NULL_BRUSH, WHITE_BRUSH.
Методы класса CButton
HBITMAP GetBitmap() const;
Возвращает дескриптор растрового изображения, сопоставленного кнопке. Если такового не существует, то возвращается NULL.
HBITMAP SetBitmap(HBITMAP hBitmap);
Сопоставляет кнопке растровое изображение. Значением параметра должен быть дескриптор растрового изображения. Правила размещения растрового изображения такие же, как и у значка.
HCURSOR GetCursor();
Возвращает дескриптор курсора, сопоставленного кнопке методом SetCursor. Если у кнопки нет сопоставленного курсора, то возвращается NULL.
HCURSOR SetCursor(HCURSOR hCursot);
Сопоставляет кнопке курсор, изображение которого будет помещено на поверхность кнопки аналогично значку и растровому изображению.
UINT GetState() const;
Возвращает описание набора текущих состояний кнопки. Чтобы выделить из этого описания значения конкретных типов состояния, можно использовать маски:
0х0003 - выделяет собственное состояние кнопки. Применимо только к флажку или переключателю. Если результат побитового умножения дает 0, значит кнопка находится в невыбранном состоянии, 1 - в выбранном, 2 - в неопределенном. 0х0004 - выделяет состояние первого типа. Ненулевой вариант означает, что кнопка "нажата", нулевой - кнопка свободна. 0х0008 - выделяет положение фокуса. Ненулевой вариант - кнопка в фокусе клавиатуры.
int GetCheck() const;
Возвращает собственное состояние флажка или переключателя. Возвращаемое значение может принимать одно из значений: 0 - кнопка не выбрана; 1 - кнопка выбрана; 2 - кнопка в неопределенном состоянии. Если кнопка не является ни переключателем, ни флажком, возвращается 0.
void SetCheck(int nCheck);
Устанавливает собственное состояние флажка или переключателя. Значения задаются из набора: 0 - невыбранное; 1 - выбранное; 2 - неопределенное. Значение 2 применимо только к флажку со свойством 3State.
UINT GetButtonStyle() const;
Возвращает стиль кнопки.
void SetButtonStyle(UINT nStyle, BOOL bRedraw=TRUE);
Устанавливает стиль кнопки. Если параметр bRedraw равен TRUE, кнопка перерисовывается.
HICON GetIcon() const;
Возвращает дескриптор пиктограммы, сопоставленной кнопке. Если у кнопки нет сопоставленной пиктограммы, возвращает NULL.
HICON SetIcon(HICON hIcon);
Сопоставляет кнопке пиктограмму. Значением параметра при вызове должен быть дескриптор пиктограммы.
Пиктограмма автоматически помешается на поверхность кнопки и сдвигается в ее центр. Если поверхность кнопки меньше пиктограммы, она обрезается со всех сторон до размеров кнопки. Положение пиктограммы может быть выровнено и не по центру. Для этого нужно, чтобы кнопка имела одно из следующих свойств: BS_LEFT, BS_RIGHT, BS_CENTER, BS_TOP, BS_BOTTOM, BS_VCENTER
Данный метод устанавливает для кнопки только одну пиктограмму, которая будет наравне с текстом присутствовать при любом ее состоянии. Не надо путать ее с растровым изображением у растровой кнопки.
Методы класса CComboBox
int GetCurSel() const;
Возвращает целочисленный указатель выбранной строчки.
int SetCurSel(int nSelect);;
Ставит указатель на строчку с номером nSelect.
int GetLBText(int nIndex, LPTSTR lpszText) const;
void GetLBText(int nIndex, CString& rString) const;
Записывает содержимое строчки с индексом nIndex в переменные LPTSTR lpszText или CString& rString.
int GetLBTextLen(int nIndex) const;
Возвращает длину строчки с индексом nIndex.
int AddString(LPCTSTR lpszString);
Добавляет строчку в список.
int DeleteString(UINT nIndex);
Удаление строчки с индексом nIndex.
int InsertString(int nIndex, LPCTSTR lpszString);
Заменяет строчку с индексом nIndex содержимым переменной LPCTSTR lpszString.
Методы класса CEdit
Окна редактирования могут работать в режимах однострочного и многострочного редакторов. Приведем сначала методы, общие для обоих режимов, а затем методы для многострочного редактора.
Общие методы :
DWORD GetSel() const;
void GetSel(int& nStartChar, int& nEndChar) const;
Получает первую и последнюю позиции выделенного текста. Для значения типа DWORD младшее слово содержит позицию первого, старшее - последнего символа.
void SetSel(DWORD dwSelection, BOOL bNoScroll=FALSE);
void SetSel(int nStartChar, int nEndChar, BOOL bNoScroll=FALSE);
Устанавливает новое выделение текста, задавая первый и последний выделенный символ. Значение FALSE параметра bNoScroll должно отключать перемещение курсора в область видимости.
void ReplaceSel(LPCTSTR lpszNewText);
Заменяет выделенный текст на строку, передаваемую в параметре lpszNewText.
void Clear();
Удаляет выделенный текст.
void Copy();
Копирует выделенный текст в буфер.
void Cut();
Переносит (копирует и удаляет) выделенный текст в буфер обмена.
void Paste();
Вставляет текст из буфера обмена, начиная с позиции, в которой находится курсор.
BOOL Undo();
Отмена последней операции, выполненной редактором. Если редактор однострочный, возвращается всегда неотрицательное значение, иначе неотрицательное значение возвращается лишь в случае успешной замены.
BOOL CanUndo() const;
Определяет, можно ли отменить последнюю операцию редактора.
void EmptyUndoBuffer();
Сбрасывает флаг undo, сигнализирующий о возможности отмены последней операции редактора, и тем самым делает невозможным отмену. Этот флаг сбрасывается автоматически при выполнении методов SetWindowText и SetHandle.
BOOL GetModify() const;
Возвращает неотрицательное значение, если содержимое окна редактирования не модифицировалось. Информация о модификации поддерживается в специальном флаге, обнуляемом при создании окна редактирования и при вызове метода:
void SetModify(BOOL bModified=TRUE);
Устанавливает или сбрасывает флаг модификации (см. предыдущий метод). Флаг сбрасывается при вызове метода с параметром FALSE и устанавливается при модификации содержимого окна редактирования или при вызове SetModify с параметром TRUE.
BOOL SetReadOnly(BOOL bReadOnly=TRUE);
Устанавливает режим просмотра (bReadOnly=TRUE) или редактирования (bReadOnly=FALSE).
TCHAR GetPasswordChar() const;
Возвращает символ, который при выводе пароля будет появляться на экране вместо символов, набираемых пользователем. Если такой символ не определен, возвращается 0. Устанавливается этот символ методом (по умолчанию используется "*"):
void SetPasswordChar(TCHAR ch);
void LimitText(int nChars=0);
Устанавливает максимальную длину в байтах текста, который может ввести пользователь. Если значение параметра равно 0, длина текста устанавливается равной UINT_MAX.
Методы работы с многострочным редактором :
void LineScroll(int nLines, int nChars=0);
Прокручивает текст в области редактирования. Параметр nLimes задает число строк для вертикальной прокрутки. Окно редактирования не прокручивает текст дальше последней строки. При положительном значении параметра область редактирования сдвигается вдоль текста к последней строке, при отрицательной - к первой.
Параметр nChars задает число символов для горизонтальной прокрутки. Окно редактирования прокручивает текст вправо, даже если строки закончились. В этом случае в области редактирования появляются пробелы. При положительном значении параметра область редактирования сдвигается вдоль к концу строки, при отрицательном - к началу.
int GetFirstVisibleLine() const;
Возвращает номер первой видимой строки.
int GetLineCount() const;
Возвращает число строк текста, находящегося в буфере редактирования. Если текст не вводился, возвращает 1.
int GetLine(int nIndex, LPTSTR lpszBuffer) const;
int GetLine(int nIndex, LPTSTR lpszBuffer, int nMaxLength) const;
Копирует строку с номером, равным значению параметра nIndex, в буфер, заданный параметром lpszBuffer. Первое слово в буфере должно задавать его размер. При вызове второго варианта метода значение параметра nMaxLength копируется в первое слово буфера.
Метод возвращает число в действительности скопированных байтов. Если номер строки больше или равен числу строк в буфере окна редактирования, возвращает 0. Текст копируется без каких-либо изменений, нуль-символ не добавляется.
int LineIndex(int nLine=-1) const;
Возвращает номер первого символа в строке. Неотрицательное значение параметра принимается в качестве номера строки. Значение -1 задает текущую строку. Если номер строки больше или равен числу строк в буфере окна редактирования (строки нумеруются с 0), возвращается 0.
Методы класса CListBox
void ResetContent();
Очищает содержимое списка, делая его пустым.
int AddString( LPCSTR lpszItem);
Добавляет строку lpszItem в список и сортирует его, если при создании включено свойство Sort. В противном случае элемент добавляется в конец списка.
int DeleteString( UINT nIndex);
Удаляет из списка элемент с индексом nIndex. Индексация элементов начинается с 0.
int GetCurSel() const;
Получает индекс элемента, выбранного пользователем.
int SetCurSel( int nSelect);
Отмечает элемент с индексом nSelect как выбранный элемент списка. Если значение параметра равно -1, список не будет содержать отмеченных элементов.
int GetText( int nIndex, LPSTR lpszBuffer) const;
void GetText( int nIndex, CString& rString) const;
Копирует элемент с индексом nIndex в буфер.
int SetTopIndex( int nIndex);
Организует прокрутку списка в окне так, чтобы элемент с индексом nIndex был видимым.
int FindString( int nStartAfter, LPCSTR lpszItem) const;
Организует поиск в списке и возвращает в качестве результата индекс элемента списка, префикс которого совпадает со строкой lpszItem. Результат не зависит от регистра, в котором набирались символы сравниваемых строк. Параметр nStartAfter задает начало поиска, но поиск идет по всему списку. Он начинается от элемента, следующего за nStartAfter, до конца списка и затем продолжается от начала списка до элемента с индексом nStartAfter. В качестве результата выдается первый найденный элемент, удовлетворяющий условиям поиска. Если такого нет, результат получает значение LB_ERR.
int FindStringExact( int nIndexStart, LPCSTR lpszFind) const;
Этот метод отличается от предыдущего тем, что теперь не префикс элемента должен совпадать со строкой lpszFind, а сам элемент. Поиск по-прежнему не чувствителен к регистру, в котором набираются символы.
Методы класса CProgressCtrl
void SetRange(short nLower, short nUpper);
void SetRange32(int nLower, int nUpper);
Устанавливает минимальное ( nLower ) и максимальное значение ( nUpper ).
void GetRange(int& nLower, int& nUpper);
Записывает в переменные nLower и nUpper минимальное и максимальное значение.
int GetPos();
Возвращает текущее значение.
int SetPos(int nPos);
Устанавливает текущее значение в nPos.
int SetStep(int nStep);
Устанавливает шаг ( nStep ) вывода.
Методы класса CSliderCtrl
int GetRangeMax() const;
int GetRangeMin() const;
void GetRange(int& nMin, int& nMax) const;
Первые две функции возвращают максимальное и минимальное знанение, а третья - записывает эти значения в nMax и nMin соответственно.
void SetRangeMin(int nMin, BOOL bRedraw = FALSE);
void SetRangeMax(int nMax, BOOL bRedraw = FALSE);
void SetRange(int nMin, int nMax, BOOL bRedraw = FALSE);
Первые две функции устанавливают максимальное и минимальное знанение, а третья - устанавливает эти значения из переменных nMax и nMin соответственно. Аргумент bRedraw отвечает за перерисовку слайдера.
int GetPos() const;
Возвращает текущую позицию.
void SetPos(int nPos);
Устанавливает текущую позицию в nPos.
BOOL SetTic(int nTic);
Устанавливает шаг ( nTic ).
void SetTicFreq(int nFreq);
Устанавливает частоту засечек ( nFreq ).
Методы класса CSpinButtonCtrl
int SetPos(int nPos);
Устанавливает текущую позицию в nPos.
int GetPos() const;;
Возвращает текущую позицию.
void SetRange(int nLower, int nUpper);
void SetRange32(int nLower, int nUpper);
Устанавливает максимальное и минимальное знанение из переменных nMax и nMin соответственно.
void GetRange(int &lower, int& upper) const;
void GetRange32(int &lower, int& upper) const;;
Эти две функции записывают максимальное и минимальное знанение в upper и lower соответственно.
Некоторые сведения о программировании Windows-приложений
MFC – это базовый набор (библиотека) классов, написанных на языке С++ и предназначенных для упрощения и ускорения процесса программирования под Windows. Перед изучением библиотеки MFC и ее использованием для создания Windows-приложений, следует вспомнить, как работает сама Windows и каковы принципы взаимодействия программ с ней, какова структура типичной Windows-программы.
Ну вот и всё ActiveX MyClock полностью готов !!!
[ Назад | Оглавление | Далее ]
//
Объекты GDI
При рисовании фигур в Visual C++ используются специальные объекты GDI, т.е. объекты интерфейса графического устройства (GDI - Graphics Device Interface) системы Windows.